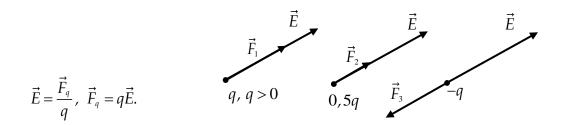


Теоретическая справка к лекции 5

Электрический заряд.

Элементарный электрический заряд $e=1,6\cdot 10^{-19}~K\!\!\Lambda$. Заряд электрона отрицательный $(q_e=-e)$, заряд протона положительный $(q_p=+e)$. Заряд тела, в состав которого входят N_e электронов и N_p протонов равен $q=e(N_p-N_e)$.

Закон сохранения электрического заряда: в замкнутой системе алгебраическая сумма всех зарядов остается постоянной.


<u>Закон Кулона:</u> модуль силы взаимодействия двух точечных неподвижных зарядов в вакууме пропорционален произведению модулей зарядов q_1 и q_2 , обратно пропорционален квадрату расстояния r между ними:

$$F = k \frac{|q_1| \cdot |q_2|}{r^2}.$$

Здесь $k = 9 \cdot 10^9 \ H \cdot M^2 \ / \ K \ell^2$ (в системе СИ). Силы взаимодействия направлены вдоль прямой, проходящей через эти заряды. Одноименные заряды отталкиваются, разноименные — притягиваются. Заряженные тела (заряды) создают вокруг себя электрическое поле (являются источниками электрического поля).

Напряженность и потенциал электрического поля.

Если на точечный (пробный) заряд q, помещенный в исследуемую точку поля, со стороны электрического поля действует сила \vec{F}_q , то векторная величина \vec{E} , называемая напряженностью этого электрического поля в данной точке, определяется выражением

Напряженность \vec{E} является <u>силовой</u> характеристикой электрического поля.

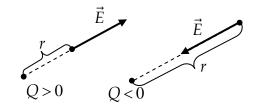
<u>Энергетическая</u> характеристика электрического поля — <u>потенциал</u> ϕ - вводится как отношение потенциальной энергии W пробного заряда q к величине этого заряда

$$\varphi = \frac{W}{q}$$
.

Разность потенциалов $\phi_1 - \phi_2$ определяется как отношение расоты Λ_{1-2} сил электростатического поля по перемещению пробного заряда q из точки 1 в точку 2

$$\varphi_1 - \varphi_2 = \frac{A_{1-2}}{q}.$$

Электростатическое поле – потенциальное поле, т.е. работа сил электростатического поля не зависит от формы траектории.


<u>Принцип суперпозиции</u>. В каждой точке напряженность \vec{E} электрического поля равна векторной сумме напряженностей полей, создаваемых в этой точке всеми источниками электрических полей

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots$$

Потенциал поля, созданного несколькими зарядами (не обязательно точечными), равен сумме потенциалов полей созданных отдельными зарядами

$$\varphi = \varphi_1 + \varphi_2 + \dots .$$

 $\frac{\text{Напряженность}}{\text{и потенциал}}$ электрического поля, созданного в вакууме неподвижным $\frac{\textit{movevным}}{\text{и потенциал}}$ зарядом Q на расстоянии r от него

$$E = k \frac{|Q|}{r^2}; \quad \varphi = k \frac{Q}{r}.$$

Потенциал бесконечно удаленной точки поля (бесконечности) полагают равным нулю.

<u>Напряженность и потенциал</u> электрического поля, созданного в вакууме неподвижной <u>равномерно заряженной сферой</u> (заряд Q, радиус R), r - расстояние от центра сферы до интересующей точки.

- а) точка внутри сферы: r < R, E(r) = 0, $\varphi(r) = k \frac{Q}{R}$ внутри заряженной сферы напряженность равна нулю, потенциал равен потенциалу поверхности сферы.
 - б) точка вне сферы: $r \ge R$, $E(r) = k \frac{|Q|}{r^2}$, $\varphi(r) = k \frac{Q}{r}$.

Поле бесконечной равномерно заряженной плоскости (повераностная плотность электрического заряда σ). Напряженность поля по каждую сторону от плоскости одинакова (по модулю), независимо от расстояния до плоскости (однородное поле). Модуль напряженности определяется выражением

$$E = 2\pi k \left| \sigma \right| = \frac{\left| \sigma \right|}{2\epsilon_0}, \qquad \text{или} \qquad \qquad \underbrace{npu \; x < 0, \; E_x = -\frac{\sigma}{2\epsilon_0}}_{\qquad \qquad 0 \qquad \qquad } npu \; x > 0, \; E_x = \frac{\sigma}{2\epsilon_0} \quad x$$

В однородном электростатическом поле с напряженностью \vec{E} разность потенциалов $\phi_1 - \phi_2$ между точками 1 и 2, лежащими на оси ОХ, проведенной в направлении 1-2, определяется выражением

$$\varphi_1 - \varphi_2 = E_x d,$$

где d расстояние между точками 1 и 2.

Потенциал не изменяется в направлении, перпендикулярном силовым линиям. Поверхность, во всех точках которой потенциал один и тот же, называется эквипотенциальной поверхностью. Потенциал убывает в направлении вектора \vec{E} .

<u>Для проводников</u> во внешнем электростатическом поле в равновесном состоянии:

- 1) напряженность электростатического поля внутри проводника равна нулю;
- 2) вектор напряженности поля вблизи поверхности проводника перпендикулярен поверхности;
- 3) внутренность проводника не заряжена, весь заряд проводника располагается на его поверхности;
- 4) разность потенциалов любых двух точек проводника, включая точки поверхности, равна нулю, т.е. проводник является эквипотенциальной областью.

Диэлектрики.

Диэлектрики (идеальные) не содержат свободных зарядов. При внесении незаряженного однородного диэлектрика во внешнее электростатическое поле \vec{E}_0 на его поверхности появляются *связанные (поляризационные)* заряды. Возникшие при поляризации диэлектрика связанные заряды создают собственное электростатическое поле $\vec{E}_{\text{пол}}$. При этом модуль вектора напряженности результирующего поля внутри диэлектрика $\vec{E} = \vec{E}_0 + \vec{E}_{\text{пол}}$, становится меньше модуля вектора напряженности внешнего поля \vec{E}_0 ($E < E_0$).

Характеристикой однородного изотропного диэлектрика является оизлектрическая проницаемость ϵ . Если граница диэлектрика перпендикулярна внешнему электрическому полю \vec{E}_0 , то внутри диэлектрика напряженность поля \vec{E} станет в ϵ раз меньше

$$\vec{E} = \frac{\vec{E}_0}{\varepsilon}.$$

Например, напряженности полей точечного заряда и бесконечной равномерно заряженной плоскости, помещенных в диэлектрик с диэлектрической проницаемостью ϵ , будут в ϵ раз меньше, чем в вакууме

$$E_{TOY,3AP} = k \frac{|Q|}{\varepsilon r^2}; \quad E_{\Pi\Pi} = \frac{|\sigma|}{2\varepsilon\varepsilon_0}.$$

В бесконечном однородном и изотропном диэлектрике закон Кулона принимает вид

$$F_{KYJI} = k \frac{|q_1||q_2|}{\varepsilon r^2}.$$

<u>Конденсаторы.</u>

Конденсатором называют систему из двух проводников, называемых обкладками конденсатора. Если на обкладки первоначально незаряженного конденсатора поместить равные по модулю и противоположные по знаку заряды +q и -q, то между ними возникает разность потенциалов (напряжение).

Ёмкостью конденсатора называется отношение заряда одной из обкладок, например, +q, к разности потенциалов $\phi_1 - \phi_2 = U$ между этой обкладкой и другой

$$C = \frac{q}{\varphi_1 - \varphi_2} = \frac{q}{U}.$$

Единица измерения ёмкости -1 Φ (1 фарада=1 Кл/B).

<u>Плоский конденсатор</u> образован двумя пластинами, каждая из которых имеет площадь S, расстояние между которыми d много меньше размеров пластин. Объём между обкладками конденсатора заполнен диэлектриком с диэлектрической проницаемостью ε (для воздушного конденсатора можно считать $\varepsilon = 1$). Ёмкость плоского конденсатора определяется выражением

$$C = \frac{\varepsilon \varepsilon_0 S}{d}.$$

<u>При последовательном</u> соединении первоначально незаряженных конденсаторов с ёмкостями C_1 , C_2

$$C_1, q_1$$
 C_2, q_2

$$q_1 = q_2 = q_{OBIII}, \ U_{OBIII} = U_1 + U_2, \ \frac{1}{C_{OBIII}} = \frac{1}{C_1} + \frac{1}{C_2}.$$

<u>При параллельном</u> соединении первоначально незаряженных конденсаторов с ёмкостями C_1 , C_2

$$U_1 = U_2 = U_{OBIII}, \ q_{OBIII} = q_1 + q_2, \ C_{OBIII} = C_1 + C_2.$$

$$\begin{array}{c|c} C_1, q_1 \\ \hline \\ C_2, q_2 \\ \hline \end{array}$$