1. Функциональные последовательности

Рассмотрим последовательность функций

$$f_n: E \to \mathbb{R}, \quad E \subset \mathbb{R}.$$
 (1.1)

Определение. Говорят, что последовательность (1.1) *поточечно сходится* на множестве E, если числовая последовательность $\{f_n(x_0)\}$ сходится при каждом фиксированном $x_0 \in E$.

В этом случае функцию $f: E \to \mathbb{R}$, задаваемую соотношением $f(x) = \lim_{n \to \infty} f_n(x)$, называют предельной функцией последовательности $\{f_n\}$. Пишут $f_n \to f$ на E.

Таким образом, вопрос поточечной сходимости функциональной последовательности сводится к исследованию на сходимость числовых последовательностей.

Законность предельных переходов под знаком интеграла или под знаком производной требует «усиления» поточечной сходимости.

Определение. 1. Говорят, что последовательность (1.1) равномерно сходится к функции $f: E \to \mathbb{R}$ на E, если для любого $\varepsilon > 0$ найдется такое натуральное $N = N(\varepsilon)$, что при всех номерах $n \geqslant N$ в любой точке $x \in E$ выполняется неравенство $|f_n(x) - f(x)| < \varepsilon$. Пишут $f_n \rightrightarrows f$ на E.

2. Последовательность (1.1) называется равномерно сходящейся на E, если существует функция f, к которой она равномерно сходится на E.

Задача. Доказать, что если $f_n \rightrightarrows f$ на $E, g_n \rightrightarrows g$ на E, то для любых $\alpha, \beta \in \mathbb{R}$ последовательность $\alpha f_n + \beta g_n \rightrightarrows \alpha f + \beta g$ на E.

Приведем формальную запись определений сходимости и равномерной сходимости.

$$f_n \to f$$
 на $E \Leftrightarrow \forall x \in E \ \forall \varepsilon > 0 \ \exists N(x, \varepsilon) \ \forall n \geqslant N : |f_n(x) - f(x)| < \varepsilon,$
 $f_n \Longrightarrow f$ на $E \Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) \ \forall n \geqslant N \ \forall x \in E : |f_n(x) - f(x)| < \varepsilon.$

Видно, что определение поточечной сходимости переходит в определение равномерной сходимости, если по $\varepsilon > 0$ номер N можно выбрать не зависящим от x, т.е. одним для всех точек из E. И теперь ясно, что условие $(f_n \rightrightarrows f \text{ на } E)$ влечет $(f_n \to f \text{ на } E)$.

Проиллюстрируем разницу между определениями поточечной и равномерной сходимости на двух примерах.

Пример 1. Функция $f_n:[0,1]\to\mathbb{R},\ n\in\mathbb{N},$ определяется следующим образом

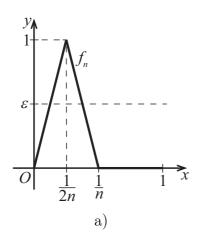
$$f_n(x) = \begin{cases} 0, & \text{если } x = 0 \text{ или } x \geqslant \frac{1}{n}; \\ 1, & \text{если } x = \frac{1}{2n}; \\ \text{линейна} & \text{на } \left[0, \frac{1}{2n}\right] \text{ и на } \left[\frac{1}{2n}, \frac{1}{n}\right]. \end{cases}$$

Отметим, что $\forall x > 0 \; \exists n_0 = [1/x] + 1 \; \forall n \geqslant n_0 \colon f_n(x) = 0$, к тому же $f_n(0) = 0$, т.е $\lim_{x \to \infty} f_n(x) = 0$ для всех $x \in [0, 1]$. Поэтому $f_n \to f \equiv 0$ на [0, 1] (см.рис. 1а).

Покажем, что сходимость $\{f_n\}$ неравномерная. Действительно, если бы $f_n \rightrightarrows f$ на [0,1], то неравенство $|f_n(x) - f(x)| < 1$ выполнялось при всех достаточно больших n и всех $x \in [0,1]$. Однако $|f_n(1/2n) - f(1/2n)| = 1$ при всех n. \square

Пример 2. Функция $f_n:[0,1]\to\mathbb{R},\ n\in\mathbb{N},$ определяется следующим образом

$$f_n(x) = \begin{cases} 0, & \text{если } x = 0 \text{ или } x = 1; \\ \frac{1}{n}, & \text{если } x = \frac{1}{2}; \\ \text{линейна} & \text{на } \left[0, \frac{1}{2}\right] \text{ и на } \left[\frac{1}{2}, 1\right]. \end{cases}$$



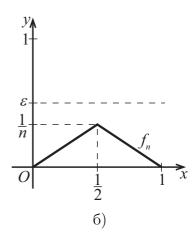


Рис. 1:

Так как $0 \le f_n(x) \le \frac{1}{n}$ для всех $x \in [0,1]$, то $f_n \to f \equiv 0$ на [0,1] (см.рис. 16). Так как $\forall \varepsilon > 0 \ \exists N = [1/\varepsilon] + 1 \ \forall n \geqslant N \ \forall x \in [0,1] \colon \ |f_n(x) - f(x)| = |f_n(x)| \le 1/n < \varepsilon$, то $f_n \rightrightarrows f$ на [0,1]. \square

Рассмотрим величину $\rho_n = \sup_{x \in E} |f_n(x) - f(x)|$, характеризующую «наибольшее» по всем точкам $x \in E$ отклонение значений функции f_n от соответствующих значений предельной функции f. Поскольку высказывание ($\forall x \in E : |f_n(x) - f(x)| \leq \varepsilon$) равносильно $(\sup |f_n(x) - f(x)| \leqslant \varepsilon)$, то определение равномерной сходимости дает следующий критерий в терминах ρ_n .

Предложение 1. $f_n \rightrightarrows f$ на $E \Leftrightarrow \lim_{n \to \infty} \rho_n = 0$, $\epsilon \partial e$ $\rho_n = \sup_{x \in E} |f_n(x) - f(x)|$. Пример 3. Исследовать на сходимость и равномерную сходимость последовательность $f_n(x) = \frac{x \ln(nx)}{n^2}$ на $E_1 = (0,1)$ и $E_2 = (1,+\infty)$.

Решение. 1) Исследуем сходимость. Так как $\forall x>0$: $\lim_{n\to\infty}f_n(x)=0$, то $f_n\to f\equiv 0$ на $E_1 \cup E_2$.

2) Исследуем равномерную сходимость. Пусть $r_n = f_n - f$, тогда $r_n(x) = \frac{x}{n^2} \ln(nx)$. Поскольку $\rho_n = \sup_{(1,+\infty)} |r_n(x)| = |r_n(+\infty)| = +\infty$, то сходимость f_n к f на множестве E_2 неравномерная.

Супремум r_n на (0,1) найдем при помощи производной. Имеем $r'_n(x) = \frac{\ln(nx)+1}{n^2}$, $r'_n(x) = 0 \Leftrightarrow x_n = \frac{1}{ne}$. Теперь сравним значение $|r_n(x_n)| = \frac{1}{en^3}$ со «значениями» на концах интервала E_1 : $|r_n(+0)| = 0$ и $|r_n(1)| = \frac{\ln n}{n^2}$. Откуда заключаем, что $\rho_n = \sup_{\{0,1\}} |r_n(x)| = |r_n(1)|$

при n>1. Поскольку $\rho_n\to 0$ при $n\to\infty$, то $f_n\rightrightarrows f$ на E_1 . \square

Из предложения 1 вытекают два полезных утверждения.

Следствие 1. Если $\forall x \in E$: $|r_n(x)| \leq \alpha_n$, где $r_n = f_n - f$, и $\lim_{n \to \infty} \alpha_n = 0$, то $f_n \Rightarrow f$ на E.

▲ Переходя в неравенстве $0 \leqslant |r_n(x)| \leqslant \alpha_n$ к супремуму по всем $x \in E$, получим $0\leqslant \rho_n\leqslant \alpha_n$. Откуда по T о зажатой последовательности заключаем, что последовательность $\{\rho_n\}$ является бесконечно малой. По критерию равномерной сходимости $f_n \rightrightarrows f$ на E.

Следствие 2 (метод «плохой точки»). Если для каждого $n \in \mathbb{N}$ найдется $x_n \in E$, что $r_n(x_n) \not\to 0$, где $r_n = f_n - f$, то $\{f_n\}$ сходится к f неравномерно на E.

▲ Если $f_n \implies f$ на E, то из двойного неравенства $0 \leqslant |r_n(x_n)| \leqslant \rho_n$ следует, что последовательность $\{r_n(x_n)\}$ является бесконечно малой. ■

Пример 4. Исследовать на сходимость и равномерную сходимость последовательность $f_n(x) = \frac{nx^4}{1+nx^2}$ на $E = \mathbb{R}$.

Решение. 1) Исследуем сходимость. Зафиксируем $x \in \mathbb{R}$. Так как $\lim_{n \to \infty} \frac{nx^4}{1 + nx^2} = x^2$, то $f_n \to f$ на \mathbb{R} , где $f(x) = x^2$.

2) Исследуем равномерную сходимость. Пусть $r_n = f_n - f$, тогда $r_n(x) = -\frac{x^2}{1+nx^2}$. Поскольку $|r_n(x)| \leqslant \frac{1}{n}$ для всех $x \in \mathbb{R}$ и последовательность $\{\frac{1}{n}\}$ бесконечно малая, то по следствию 1 $f_n \Rightarrow f$ на \mathbb{R} . \square

Пример 5. Исследовать на сходимость и равномерную сходимость последовательность $f_n(x) = n^2 \left(1 - \cos \frac{1}{xn}\right)$ на $E_1 = (0,1)$ и $E_2 = (1,+\infty)$.

Решение. 1) Исследуем сходимость. Зафиксируем x>0. Так как $\cos t=1-t^2/2+o(t^2)$ при $t\to 0$, то

$$f_n(x) = n^2 \left(1 - 1 + \frac{1}{2x^2n^2} + o\left(\frac{1}{n^2}\right) \right) = \frac{1}{2x^2} + o(1)$$
 при $n \to \infty$.

Поэтому $f_n \to f$ на $E_1 \cup E_2$, где $f(x) = \frac{1}{2x^2}$.

2) Исследуем равномерную сходимость. Пусть $r_n = f_n - f$, тогда

$$r_n(x) = n^2 \left(1 - \cos \frac{1}{xn} \right) - \frac{1}{2x^2} = 2n^2 \sin^2 \frac{1}{2xn} - \frac{1}{2x^2}.$$

Ввиду неравенства $|\sin t| < t$ при t > 0 заключаем, что $r_n(x) < 0$ при всех x > 0.

Находим

$$r'_n(x) = -\frac{n}{x^2}\sin\frac{1}{xn} + \frac{1}{x^3} = \frac{1}{x^2}\left(\frac{1}{x} - n\sin\frac{1}{xn}\right) > 0.$$

Следовательно, $|r_n| = -r_n$ является положительной строго убывающей функцией при x > 0. На множестве E_2 имеем $\rho_n = \sup_{(1,+\infty)} |r_n(x)| = |r_n(1)| \to 0$ и, значит, $f_n \rightrightarrows f$ на E_2 .

Рассмотрим на E_1 последовательность точек $x_n = \frac{1}{n}$. Поскольку

$$r_n(x_n) = n^2(1/2 - \cos 1) \not\to 0$$
 при $n \to \infty$,

то по методу «плохой точки» заключаем, что $\{f_n\}$ сходится к f неравномерно на E_1 . \square

Пример 6. Исследовать на сходимость и равномерную сходимость последовательность $f_n(x) = \ln\left(e^x + \frac{1}{n}\right)$ на $E_1 = [0, +\infty)$ и $E_2 = (-\infty, 0]$.

Решение. 1) Исследуем сходимость. Так как $\forall x \in \mathbb{R}$: $f_n(x) = \ln e^x + \ln(1 + \frac{1}{e^x n}) = x + o(1)$ при $n \to \infty$, то $f_n \to f$ на \mathbb{R} , где f(x) = x.

2) Исследуем равномерную сходимость. Пусть $r_n = f_n - f$, тогда $r_n(x) = \ln(1 + \frac{1}{e^{x_n}})$. Воспользуемся неравенством $\ln(1+t) \leqslant t$ при t > -1. Тогда для $x \in E_1$ имеем

$$0 < r_n(x) \leqslant \frac{1}{e^x n} \leqslant \frac{1}{n} \to 0$$
 при $n \to \infty$,

так что по следствию 1 $f_n \rightrightarrows f$ на E_1 .

Рассмотрим на E_2 последовательность точек $x_n = -\ln n$. Поскольку $r_n(x_n) = \ln 2$, то по методу «плохой точки» заключаем, что $\{f_n\}$ сходится к f неравномерно на E_2 . \square

2. Равномерная сходимость ряда

Пусть дана последовательность функций $u_n \colon E \to \mathbb{R}$. Рассмотрим ряд

$$\sum_{n=1}^{\infty} u_n. \tag{2.1}$$

Определение. 1) Ряд (2.1) называется $\mathit{сходящимся}$ в точке $x_0 \in E$, если сходится числовой ряд $\sum_{n=1}^{\infty} u_n(x_0)$. На множестве сходимости (2.1) определена функция $S \colon E \to \mathbb{R}$, $S(x) = \sum_{n=1}^{\infty} u_n(x)$, называемая *суммой* ряда (2.1).

2) Ряд (2.1) называется равномерно сходящимся на E, если последовательность его частичных сумм $S_n(x) = \sum_{k=1}^n u_k(x)$ равномерно сходится к S(x) на E.

Введем еще обозначение $r_n(x) = \sum_{k=n+1}^{\infty} u_k(x) - n$ -й остаток ряда (2.1). Так как $r_n = S - S_n$, то из определений следует

Предложение 2. Пусть ряд (2.1) сходится на E. Тогда для равномерной сходимости этого ряда на E необходимо и достаточно выполнения условия $r_n(x) \rightrightarrows 0$ на E.

Пример 7. Исследовать равномерную сходимость ряда $\sum_{1}^{\infty} \frac{x^2}{(1+x^2)^n}$ на множествах а) $E_1 = (0,1)$ и б) $E_2 = [1,+\infty)$.

Решение. 1) Исследуем сходимость. Члены ряда образуют бесконечно убывающую геометрическую прогрессию со знаменателем $q=\frac{1}{1+x^2}<1$, поэтому ряд сходится при $\mathrm{Bcex}\ x > 0.$

2) Исследуем равномерную сходимость. Остаток ряда по известной формуле суммы

бесконечно убывающей геометрической прогрессии записывается в виде $r_n(x) = \frac{1}{(1+x^2)^n}$. На E_2 выполнено $0 \leqslant r_n(x) \leqslant \frac{1}{2^n} \to 0$ и, значит, $r_n(x) \rightrightarrows 0$ на E_2 . По предложению 2 ряд сходится равномерно на E_2 .

Поскольку $r_n(\frac{1}{\sqrt{n}}) \to e^{-1}$ и $\frac{1}{\sqrt{n}} \in E_1$ при $n \geqslant 2$, то $r_n(x) \not \rightrightarrows 0$ на E_1 . По предложению 2 ряд сходится неравномерно на E_1 . \square

Рассмотренный пример нетипичен: выписать явную формулу остатка $r_n(x)$ (а, значит, и для суммы ряда) удается лишь в исключительных случаях. Этим исследование равномерной сходимости рядов отличается от исследования последовательностей, где предельная функция обычно известна.

Приведем необходимое условие равномерной сходимости ряда.

Теорема 1. Если ряд $\sum_{n=1}^{\infty} u_n$ равномерно сходится на E, то $u_n(x) \rightrightarrows 0$ на E.

Это утверждение можно несколько усилить.

Теорема 1′. Если ряд $\sum_{n=1}^{\infty} u_n$ равномерно сходится на E, то для любой последовательности натуральных чисел $\{p_n\}$ отрезки ряда

$$\sum_{k=n+1}^{n+p_n} u_k(x) := u_{n+1}(x) + u_{n+2}(x) + \ldots + u_{n+p_n}(x)$$

равномерно сходятся к нулю на E.

Действительно, $\sum_{k=n+1}^{n+p_n} u_k(x) = S_{n+p_n}(x) - S_n(x)$. Ввиду равномерной сходимости ряда $S_n(x) \rightrightarrows S(x)$ на E. Но тогда и $S_{n+p_n}(x) \rightrightarrows S(x)$ на E: для этой последовательности по $\varepsilon > 0$ номер N в определении равномерной сходимости можно взять таким же, как и для $\{S_n\}$. Следовательно, $\sum_{k=n+1}^{n+p_n} u_k(x) \rightrightarrows S(x) - S(x) = 0$.

Теорема 2 (Вейерштрасс). $\Pi ycmb \ \forall \ n \in \mathbb{N} \ u \ \forall \ x \in E \ выполняется неравенство$

Теорема 2 (Вейерштрасс). Пусть $\forall n \in \mathbb{N} \ u \ \forall x \in E$ выполняется неравенство $|u_n(x)| \leqslant a_n$, u числовой ряд $\sum_{n=1}^{\infty} a_n$ сходится. Тогда ряд $\sum_{n=1}^{\infty} u_n$ сходится абсолютно u равномерно на E.

Действительно, абсолютная сходимость ряда следует по признаку сравнения. Равномерная сходимость ряда следует по предложению 2: его n-й остаток по модулю оценивается n-м остатком $R_n = \sum_{k=n+1}^{\infty} a_k$ сходящегося ряда $\sum_{n=1}^{\infty} a_n$.

Приведем еще одно исследование равномерной сходимости для предыдущего примера. На E_2 член ряда оценивается $\left|\frac{x^2}{(1+x^2)^n}\right| \leqslant \frac{1}{(1+x^2)^{n-1}} \leqslant \frac{1}{2^{n-1}}$ — членом сходящегося ряда. Поэтому ряд сходится равномерно на E_2 по признаку Вейерштрасса.

Теперь докажем неравномерную сходимость ряда на E_1 . Обозначим его общий член через u_n . Так как $u_n(\frac{1}{\sqrt{n}}) \sim \frac{1}{e^n}$ при $n \to \infty$, это наводит на мысль рассмотреть отрезок ряда из n членов:

$$u_{n+1}\left(\frac{1}{\sqrt{n}}\right) + u_{n+2}\left(\frac{1}{\sqrt{n}}\right) + \ldots + u_{2n}\left(\frac{1}{\sqrt{n}}\right) \geqslant nu_{2n}\left(\frac{1}{\sqrt{n}}\right) = \frac{1}{e^2} > 0,$$

так что $\sum_{k=n+1}^{2n} u_k(x) \not \equiv 0$ на E_1 . Осталось применить $\mathrm{T}1'$.

Пример 8. Исследовать на равномерную сходимость ряд $\sum_{n=1}^{\infty} \frac{\arctan nx}{e^{-nx^2} + n^2}$ на множестве $E = \mathbb{R}$.

Решение. Если член ряда обозначить через u_n , то ввиду неравенств $|\arctan nx| \leqslant \frac{\pi}{2}$, $e^{-nx^2} > 0$ для всех $x \in \mathbb{R}$, имеем оценку $|u_n(x)| \leqslant \frac{\pi}{2n^2}$.

Ряд $\sum_{n=1}^{\infty} \frac{\pi}{2n^2}$ сходится, поэтому исходный ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно на $\mathbb R$ по признаку Вейерштрасса. \square

Пример 9. Исследовать равномерную сходимость ряда $\sum_{n=1}^{\infty} 2^n \sin \frac{x}{3^n}$ на множествах $E_1 = (0,1)$ и $E_2 = (1,+\infty)$.

Решение. Обозначим общий член ряда через u_n .

- 1) Исследуем сходимость. Так как $|\sin t| \le t$ при $t \ge 0$, то $|u_n(x)| \le x \left(\frac{2}{3}\right)^n$ для всех x > 0. Поскольку $x \left(\frac{2}{3}\right)^n$ член бесконечно убывающей геометрической прогрессии, то ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится абсолютно по признаку сравнения.
- 2) Исследуем равномерную сходимость. На E_1 оценку общего члена можно сделать равномерной по x: $|u_n(x)| \leqslant \left(\frac{2}{3}\right)^n$, так что ряд $\sum_{n=1}^{\infty} u_n$ на этом множестве сходится равномерно по признаку Вейерштрасса.

Рассмотрим на E_2 последовательность $x_n = 3^n$. Поскольку $u_n(3^n) = 2^n \sin 1 \to +\infty$ при $n \to \infty$, то необходимое условие равномерной сходимости не выполнено и, значит, ряд $\sum_{n=1}^{\infty} u_n$ сходится неравномерно на E_2 . \square

Пример 10. Исследовать равномерную сходимость ряда $\sum_{n=1}^{\infty} \frac{\sin nx}{e^{n^2x}-1}$ на множествах $E_1=(0,1)$ и $E_2=(1,+\infty)$.

Решение. Обозначим общий член ряда через u_n .

- 1) Исследуем сходимость. Так как $e^{t}-1\geqslant t$, то $|u_{n}(x)|\leqslant \frac{1}{e^{n^{2}x}-1}\leqslant \frac{1}{n^{2}x}$ для всех x>0. Поскольку $\frac{1}{n^{2}x}$ член сходящегося ряда, то ряд $\sum_{n=1}^{\infty}u_{n}(x)$ сходится абсолютно при x>0 по признаку сравнения.
- 2) Исследуем равномерную сходимость. На E_2 оценку общего члена можно сделать равномерной по x: $|u_n(x)| \leqslant \frac{1}{n^2}$, так что ряд $\sum_{n=1}^{\infty} u_n$ на этом множестве сходится равномерно по признаку Вейерштрасса.

Покажем, что на E_1 ряд сходится неравномерно. Если бы ряд там сходился равномерно, то отрезки ряда $\sum_{k=n+1}^{2n} u_k(x)$ равномерно стремились бы к нулю (T1'). Однако это не так: если положить $x_n = \frac{1}{n^2}$, то

$$\left| \sum_{k=n+1}^{2n} u_k(x_n) \right| = \sum_{k=n+1}^{2n} \frac{\sin kx_n}{e^{k^2 x_n} - 1} \geqslant n \frac{\sin nx_n}{e^{4n^2 x_n} - 1} = \frac{n \sin \frac{1}{n}}{e^4 - 1},$$

откуда, учитывая, что $n\sin\frac{1}{n}\geqslant\frac{1}{2}$ при всех достаточно больших n,имеем

$$\left| \sum_{k=n+1}^{2n} u_k \left(\frac{1}{n^2} \right) \right| \geqslant \frac{1}{2(e^4 - 1)} =: \varepsilon_0 > 0. \quad \Box$$

Теорема 3 (Дирихле). *Пусть функции* $a_n:E\to\mathbb{R},\ b_n:E\to\mathbb{R}$ таковы, что

- 1) последовательность сумм $A_n = \sum_{k=1}^n a_k$ равномерно ограничена на E, т.е. $\exists C>0 \ \forall n\in\mathbb{N} \ \forall x\in E\colon |A_n(x)|\leqslant C.$
 - 2) $\forall x \in E$ последовательность $\{b_n(x)\}$ монотонна;
 - 3) $b_n \rightrightarrows 0$ на E;

Тогда ряд $\sum_{n=1}^{\infty} a_n b_n$ равномерно сходится на E.

Пример 11. Исследовать равномерную сходимость ряда $\sum_{n=1}^{\infty} \frac{\sin n^2 x \sin n x}{\sqrt{n+x^2}}$ на $E = \mathbb{R}$.

Решение. Поскольку $\left\{\frac{1}{\sqrt{n+x^2}}\right\}$ стремится к нулю, монотонно убывая (при фиксированном x) и равномерно на $\mathbb R$ ввиду оценки $0\leqslant \frac{1}{\sqrt{n+x^2}}\leqslant \frac{1}{\sqrt{n}}$, а частичные суммы ряда $\sum\limits_{n=1}^\infty \sin n^2x \sin nx$ равномерно ограничены на $\mathbb R$,

$$2\left|\sum_{k=1}^{n}\sin k^{2}x\sin kx\right| = \left|\sum_{k=1}^{n}\left[\cos k(k-1)x - \cos k(k+1)x\right]\right| = |1 - \cos n(n+1)x| \leqslant 2,$$

то ряд сходится равномерно на $E=\mathbb{R}$ по признаку Дирихле. \square

3. Свойства равномерно сходящихся рядов

Некоторые свойства равномерно сходящихся рядов аналогичны свойствам конечных сумм функций.

Теорема 4. Если функции $u_n \colon E \to \mathbb{R}$ непрерывны в точке $x_0 \in E$ и ряд $\sum_{n=1}^{\infty} u_n$ сходится равномерно на E, то его сумма $S = \sum_{n=1}^{\infty} u_n$ также непрерывна в точке x_0 .

Пример 12. Найти
$$L = \lim_{x \to 1} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^x}$$
.

Решение. В данном примере не представляется возможным найти сумму ряда S(x), поэтому путь последовательных действий выглядит тупиковым. Однако известно значение $S(1) = -\ln 2$ (см. «Числовые ряды»). Чтобы быть уверенным, что искомый предел L = S(1), нам нужно проверить непрерывность функции S в точке x = 1. Так как члены ряда непрерывны, достаточно проверить, что ряд под знаком предела сходится равномерно в некоторой окрестности x = 1.

Равномерная сходимость ряда на интервале $(1-\delta,1+\delta)$, где $\delta\in(0,1)$, следует по признаку Дирихле: там последовательность $\left\{\frac{1}{n^x}\right\}$ монотонно убывая стремится к нулю, причем равномерно ввиду оценки $\left|\frac{1}{n^x}\right|\leqslant\frac{1}{n^{1-\delta}}$, а последовательность $\left\{\sum_{k=1}^n(-1)^k\right\}$ очевидно ограничена.

Итак, по Т4 имеем
$$L = \lim_{x \to 1} S(x) = S(1) = -\ln 2$$
. \square

Пример 13. Исследовать равномерную сходимость ряда $\sum_{n=1}^{\infty} \frac{x}{(1+x^2)^n}$ на \mathbb{R} .

Решение. При x=0 ряд сходится как нулевой. При $x\neq 0$ ряд сходится как геометрический ряд с $q=\frac{1}{1+x^2}<1$, его сумма $S(x)=\frac{x}{1-\frac{1}{1+x^2}}=\frac{1}{x}$. Итак, сумма ряда $S(x)=\frac{1}{x}$ при $x\neq 0$ и S(0)=0. Поскольку члены ряда непрерывны на \mathbb{R} , а его сумма разрывна, то ряд сходится на \mathbb{R} неравномерно. \square

Теорема 5. Пусть функции u_n : $[a,b] \to \mathbb{R}$ непрерывны и ряд $\sum_{n=1}^{\infty} u_n$ сходится равномерно на [a,b]. Тогда его можно почленно интегрировать на [a,b], т.е.

$$\int_a^b \sum_{n=1}^\infty u_n(x) dx = \sum_{n=1}^\infty \int_a^b u_n(x) dx.$$

Пример 14. Найти
$$I = \int_{1}^{2} f(x) dx$$
, где $f(x) = \sum_{n=1}^{\infty} n e^{-nx}$.

Решение. Здесь легче проверить равномерную сходимость ряда и, в силу Т5, поменять порядок суммирования и интегрирования, чем находить в явном виде сумму ряда.

Поскольку $0 < ne^{-nx} \leqslant ne^{-n}$ на [1,2] и ряд $\sum_{n=1}^{\infty} ne^{-n}$ сходится (например, по признаку Коши сходимости числовых рядов, $\lim_{n\to\infty} \sqrt[n]{ne^{-n}} = \frac{1}{e} < 1$), то $\sum_{n=1}^{\infty} ne^{-nx}$ сходится равномерно на [1,2] по признаку Вейерштрасса.

Теперь, согласно Т5, можно интегрировать ряд почленно, используя подстановку t=-nx:

$$I = -\sum_{n=1}^{\infty} \int_{-n}^{-2n} e^t dt = \sum_{n=1}^{\infty} (e^{-n} - e^{-2n}) = \frac{e}{e^2 - 1}. \quad \Box$$

Теорема 6. Пусть функции u_n : $[a,b] \to \mathbb{R}$ непрерывно дифференцируемы, ряд $\sum_{n=1}^{\infty} u'_n$ равномерно сходится на [a,b], а исходный ряд $\sum_{n=1}^{\infty} u_n$ сходится хотя бы в одной точке $x_0 \in [a,b]$. Тогда сумма $S = \sum_{n=1}^{\infty} u_n$ непрерывно дифференцируема на [a,b] и ряд там можно почленно дифференцировать, т.е.

$$\left[\sum_{n=1}^{\infty} u_n(x)\right]' = \sum_{n=1}^{\infty} u'_n(x), \quad a \leqslant x \leqslant b.$$

Пример 15. Доказать, что функция $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^x}$ бесконечно дифференцируема на луче $E = (0, +\infty)$.

Решение. Обозначим n-й член ряда через u_n . Пусть $x \in (0, +\infty)$. Поскольку последовательность $\{\frac{1}{n^x}\}$ монотонно убывая стремится к нулю, то ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится по признаку Лейбница.

Используя Т6 докажем, что f на E имеет непрерывные производные всех порядков. Члены ряда $u_n(x)=\frac{(-1)^n}{n^x}$ — бесконечно дифференцируемые на E функции, при этом

$$u_n^{(k)}(x) = (-1)^n (e^{-x \ln n})^{(k)} = \frac{(-1)^{n+k} \ln^k n}{n^x}, \quad k = 1, 2, \dots$$

Пусть $x_0 \in E$ и $0 < \delta < x_0$. Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \ln n}{n^x}$ на отрезке $[x_0 - \delta, x_0 + \delta]$. Так как

$$0 \leqslant \frac{\ln n}{n^x} \leqslant \frac{\ln n}{n^{x_0 - \delta}} \to 0$$
 при $n \to \infty$,

то $\frac{\ln n}{n^x} \rightrightarrows 0$ на $[x_0 - \delta, x_0 + \delta]$. Положим $g(t) = \frac{\ln t}{t^x}$. Ее производная $g'(t) = \frac{1-x \ln t}{t^{x+1}} < 0$ при $t > e^{\frac{1}{x_0 - \delta}}$, поэтому последовательность $\left\{\frac{\ln n}{n^x}\right\}$ убывает при всех $n > [e^{\frac{1}{x_0 - \delta}}]$. По признаку Дирихле ряд $\sum_{n=1}^{\infty} u'_n$ сходится равномерно на $[x_0 - \delta, x_0 + \delta]$. Следовательно, по Т6 там существует непрерывная $f'(x) = \sum_{n=1}^{\infty} u'_n(x)$. Функция f имеет непрерывную производную в окрестности каждой точки из E и, значит, f непрерывно дифференцируема на множестве E.

Учитывая, что $\frac{\ln^k n}{n^x} = (\frac{\ln n}{n^{x/k}})^k$, заключаем равномерную сходимость на отрезке $[x_0 - \delta, x_0 + \delta]$ рядов $\sum_{n=1}^{\infty} u_n^{(k)}(x), \ k \geqslant 2$. Последовательно применяя Т6 делаем вывод, что f имеет непрерывные производные всех порядков на E, причем

$$f^{(k)}(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+k} \ln^k n}{n^x}, \quad k = 1, 2, \dots$$

Равномерно сходящиеся функциональные ряды часто используют для построения примеров функций с заданными свойствами.

Пример 16. Показать, что существует непрерывная функция $f: \mathbb{R} \to \mathbb{R}$, не имеющая ни в одной точке конечной производной.

Решение. Продолжим функцию |x| с отрезка [-2,2] на всю числовую прямую с периодом 4, т.е. рассмотрим функцию $\varphi \colon \mathbb{R} \to \mathbb{R}, \ \varphi(x\pm 4) = \varphi(x)$ и $\varphi(x) = |x|$ при $|x| \leqslant 2$. Заметим, что если на интервале (x,y) нет четных целых чисел, то φ там кусочно линейна с угловым коэффициентом ± 1 и, значит,

$$|\varphi(x) - \varphi(y)| = |x - y|. \tag{3.1}$$

Определим функцию f следующим образом

$$f(x) = \sum_{n=1}^{\infty} f_n(x), \quad f_n(x) = 4^{-n} \varphi(4^n x).$$

Ряд мажорируется сходящимся рядом $\sum_{n=1}^{\infty} 2 \cdot 4^{-n}$, так что он сходится равномерно на $\mathbb R$ по признаку Вейерштрасса, а так как все функции f_n непрерывны, то его сумма f также непрерывна на $\mathbb R$.

Покажем, что функция f ни в одной точке не имеет конечной производной. Пусть $a \in \mathbb{R}$, укажем такую последовательность ненулевых чисел h_k , сходящуюся к 0, что $\lim_{k\to\infty} \frac{f(a+h_k)-f(a)}{h_k}$ не существует. Фиксируем пока $k\in\mathbb{N}$. Если на интервале $(4^ka,4^ka+1)$ есть четное целое число, то таких чисел нет на интервале $(4^ka-1,4^ka)$ и наоборот. Поэтому найдется такое $\varepsilon_k=\pm 1$, что между числами 4^ka и $4^ka+\varepsilon_k$ нет четных целых чисел и, значит, ввиду (3.1) имеем $|\varphi(4^ka+\varepsilon_k)-\varphi(4^ka)|=1$. Фактически можно утверждать, что при $n\leqslant k$ между числами 4^na и $4^na+4^{n-k}\varepsilon_k$ также нет четных целых чисел: если предположить, что $4^na<2q<4^na+4^{n-k}\varepsilon_k$ для некоторого $q\in\mathbb{Z}$, то домножая это двойное неравенство на целое число 4^{k-n} , получим $4^ka<2q\cdot 4^{k-n}<4^ka+\varepsilon_k$, а это противоречит выбору ε_k . Поэтому по (3.1)

$$|\varphi(4^n a + 4^{n-k} \varepsilon_k) - \varphi(4^n a)| = 4^{n-k}, \quad 1 \leqslant n \leqslant k. \tag{3.2}$$

Поскольку φ имеет период 4, то

$$|\varphi(4^n a + 4^{n-k}\varepsilon_k) - \varphi(4^n a)| = 0, \quad n > k.$$
(3.3)

Комбинируя (3.2) и (3.3) с определением f_n , получим

$$|f_n(a+4^{-k}\varepsilon_k) - f_n(a)| = 4^{-n}|\varphi(4^n a + 4^{n-k}\varepsilon_k) - \varphi(4^n a)| = \begin{cases} 4^{-k}, & n \leq k, \\ 0, & n > k. \end{cases}$$

Положим $h_k = 4^{-k} \varepsilon_k$, тогда разностное отношение

$$\frac{f(a+h_k)-f(a)}{h_k} = \sum_{n=1}^k \frac{f_n(a+h_k)-f_n(a)}{h_k} = \sum_{n=1}^k \frac{4^{-k}}{4^{-k}\varepsilon_k} = \sum_{n=1}^k \pm 1$$

есть четное число при четном k и нечетное — при нечетном k. Поэтому предела разностных отношений при $k\to\infty$ не существует и, значит, функция f не дифференцируема в точке a. \square