Тема 14. Сопряженные преобразования. Их свойства и координатное представление. Самосопряженные преобразования и их свойства. Существование ортонормированного базиса, образованного из собственных векторов самосопряженного преобразования.

Сопряженные операторы в евклидовом пространстве

Операция скалярного произведения позволяет выделять в евклидовых пространствах специфические классы линейных операторов, обладающих рядом полезных свойств.

Определение Линейный оператор \hat{A}^+ , заданный в евклидовом пространстве E, называется сопряженным линейному оператору \hat{A} , если $\forall x,y \in E$ имеет место равенство $(\hat{A}x,y)=(x,\hat{A}^+y)$.

Пример В евклидовом пространстве, образованном бесконечно 14.1. дифференцируемыми функциями, равными нулю вне некоторого конечного интервала, со скалярным произведе-

нием
$$(x,y)=\int\limits_{-\infty}^{+\infty}x(\tau)y(\tau)d\tau$$
 для линейного оператора

$$\hat{A} = \frac{d}{d au}$$
 сопряженным будет оператор $\hat{A}^+ = -\frac{d}{d au}$.

Действительно, согласно правилу интегрирования несобственных интегралов по частям имеют место равенства

$$(\hat{A}x, y) = \int_{-\infty}^{+\infty} \frac{dx(\tau)}{d\tau} y(\tau) d\tau =$$

$$= x(\tau)y(\tau) \Big|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} x(\tau) \frac{dy(\tau)}{d\tau} d\tau =$$

$$= \int_{-\infty}^{+\infty} x(\tau)(-\frac{dy(\tau)}{d\tau})d\tau = (x, \hat{A}^+y).$$

Рассмотрим теперь конечномерное евклидово пространство E^n с базисом $\{g_1,g_2,...,g_n\}$ и выясним связь матриц линейных операторов \hat{A} и \hat{A}^+ в этом базисе, предположив, что сопряженный оператор существует. Пусть матрицы операторов \hat{A} и \hat{A}^+ имеют соответственно вид $\|\hat{A}\|_g$ и $\|\hat{A}^+\|_g$, а координатные представления элементов x и y в базисе $\{g_1,g_2,...,g_n\}$ —

$$\|x\|_{g} = \| \begin{matrix} \xi_{1} \\ \xi_{2} \\ \dots \\ r \end{matrix} \| \mathbf{y} \|_{g} = \| \begin{matrix} \eta_{1} \\ \eta_{2} \\ \dots \\ r \end{matrix} \|,$$

тогда равенство $(\hat{A}x, y) = (x, \hat{A}^+y)$ можно записать как

$$(\|\hat{A}\|_{g} \|x\|_{g})^{T} \|\Gamma\|_{g} \|y\|_{g} = \|x\|_{g}^{T} \|\Gamma\|_{g} \|\hat{A}^{+}\|_{g} \|y\|_{g}, \quad (14.1)$$

где $\|\Gamma\|_{g}$ – матрица Грама выбранного в E^{n} базиса.

В силу соотношения $(\|A\|\|B\|)^T = \|B\|^T \|A\|^T$ последнее равенство можно преобразовать к виду

$$\|x\|_{g}^{T}(\|\hat{A}\|_{g}^{T}\|\Gamma\|_{g}-\|\Gamma\|_{g}\|\hat{A}^{+}\|_{g})\|y\|_{g}=0,$$

а поскольку это равенство справедливо при любых x и y, то, приняв во внимание невырожденность матрицы Грама и проведя рассуждения, аналогичные использованным при доказательстве леммы 06.2, заключаем, что матрица, стоящая в круглых скобках, — нулевая, а из соотношения

 $\left\| \hat{A} \right\|_{g}^{\mathrm{T}} \left\| \Gamma \right\|_{g} - \left\| \Gamma \right\|_{g} \left\| \hat{A}^{+} \right\|_{g} = \left\| O \right\| \text{ следует } \left\| \hat{A}^{+} \right\|_{g} = \left\| \Gamma \right\|_{g}^{-1} \left\| \hat{A} \right\|_{g}^{\mathrm{T}} \left\| \Gamma \right\|_{g},$ которое, в частности, для ортонормированного базиса $\{e_{1}, e_{2}, \ldots, e_{n}\}$ имеет вид $\left\| \hat{A}^{+} \right\|_{e} = \left\| \hat{A} \right\|_{e}^{\mathrm{T}}$.

Лемма Если $(x, \hat{A}y) = 0 \ \forall x, y \in E$, то оператор \hat{A} нулевой. 14.1.

Доказательство.

Пусть $\forall x, y \in E$ справедливо равенство $(x, \hat{A}y) = 0$. Тогда оно будет верным и для $x = \hat{A}y$. Но из равенства $(\hat{A}y, \hat{A}y) = 0$ согласно определению 13.1 следует, что $\hat{A}y = o$. Наконец, в силу произвольности элемента y и определения 09.4 приходим к заключению, что $\hat{A} = \hat{O}$.

Лемма доказана.

Теорема Каждый линейный оператор в евклидовом простран-14.1. ${\sf стве}\,E^n$ имеет единственный сопряженный оператор.

Доказательство.

Существование в E^n оператора \hat{A}^+ , сопряженного оператору \hat{A} , следует из возможности построения матрицы вида $\left\| \Gamma \right\|_g^{-1} \left\| \hat{A} \right\|_s^{\mathrm{T}} \left\| \Gamma \right\|_g$ для любого линейного оператора \hat{A} .

Покажем теперь единственность \hat{A}^+ . Предположим, что \hat{A} имеет два сопряженных оператора \hat{A}^+ и \hat{A}^{\times} . Это означает, что $\forall x,y \in E$ одновременно выполнены равенства

$$(\hat{A}x, y) = (x, \hat{A}^{+}y)$$
 и $(\hat{A}x, y) = (x, \hat{A}^{\times}y)$.

Вычитая их почленно, получим $(x,(\hat{A}^+-\hat{A}^\times)y)=0$, но тогда по лемме 14.1 $\hat{A}^+-\hat{A}^\times=\hat{O}$.

Теорема доказана.

Теорема Для любых линейных операторов \hat{A} и \hat{B} , действующих в E, имеет место равенство

$$(\hat{A}\hat{B})^{+} = \hat{B}^{+}\hat{A}^{+}$$
.

Доказательство.

Имеет место $\forall x, y \in E$

$$((\hat{A}\hat{B})^+ x, y) = (x, \hat{A}\hat{B}y) = (\hat{A}^+ x, \hat{B}y) = (\hat{B}^+ \hat{A}^+ x, y).$$

Это означает, что $(((\hat{A}\hat{B})^+ - \hat{B}^+\hat{A}^+)x,y) = 0 \quad \forall x,y \in E \;$ и в силу леммы 14.1 $(\hat{A}\hat{B})^+ - \hat{B}^+\hat{A}^+ = \hat{O}$.

Теорема доказана.

Теорема Имеет место равенство $(\hat{A}^{+})^{+} = \hat{A}$. 14.3.

Доказательство.

 $\forall x, y \in E$ справедливы равенства

$$((\hat{A}^+)^+ x, y) = (x, \hat{A}^+ y) = (\hat{A}x, y).$$

Откуда следует, что $((\hat{A}-(\hat{A}^+)^+)x,y)=0 \quad \forall x,y\in E$ и тогда по лемме 14.1 $\hat{A}-(\hat{A}^+)^+=\hat{O}$.

Теорема доказана.

Теорема Ортогональное дополнение области значений опера14.4. Тора \hat{A} в E^n является ядром оператора \hat{A}^+ .

Доказательство.

1°. Покажем вначале, что ядро оператора \hat{A}^+ , обозначаемое через $\ker \hat{A}^+$, содержится во множестве Π – ортогональном дополнении области значений оператора \hat{A} . Действительно, любой элемент $y \in \ker \hat{A}^+$, то есть такой, что $\hat{A}^+y=o$, ортогонален элементу $b=\hat{A}x$, $x\in E^n$, поскольку

$$(b, y) = (\hat{A}x, y) = (x, \hat{A}^{+}y) = 0.$$

 $2^{\circ}.$ Теперь сравним размерности $\ker \hat{A}^{+}$ и Π . С одной стороны, в силу невырожденности базисной матрицы Грама и теоремы 09.7

$$\dim(\operatorname{ker} \hat{A}^{+}) = n - \operatorname{rg} \|\hat{A}^{+}\| =$$

$$= n - \operatorname{rg} (\|\Gamma\|^{-1} \|\hat{A}\|^{T} \|\Gamma\|) = n - \operatorname{rg} \|\hat{A}\|^{T} = n - \operatorname{rg} \|\hat{A}\|.$$

Но, с другой стороны, по теореме 09.5 размерность области значений \hat{A} равна $\operatorname{rg} \| \hat{A} \|$, поэтому (по свойству ортогонального дополнения) $\dim(\Pi) = n - \operatorname{rg} \| \hat{A} \|$.

Наконец, из соотношений $\dim(\ker \hat{A}^+) = \dim(\Pi)$ и $\ker \hat{A}^+ \subset \Pi$ следует совпадение множеств $\ker \hat{A}^+$ и Π .

Теорема доказана.

- Замечания: 1) в использованных обозначениях теорема 14.4 допускает формулировку, совпадающую с формулировкой теоремы 07.5 (Фредгольма), поскольку равенство Ax = b означает, что элемент b принадлежит области значений линейного оператора \hat{A} .
 - 2) в предположении, что столбцы $\|y\|$ и $\|b\|$ суть координатные представления элементов E^m в ортонормированном базисе, также и нижеследующую формулировку:

Теорема 14.5 (Фредгольма).

Система линейных уравнений ||A|||x|| = ||b|| совместна тогда и только тогда, когда каждое решение однородной сопряженной системы $\|A\|^T\|y\| = \|o\|$ ортогонально столбцу свободных членов $\|b\|$.

Самосопряженные операторы

Линейный оператор \hat{R} , действующий в евклидовом Определение 14.2. пространстве E, называется самосопряженным, если $\forall x, y \in E$ имеет место равенство

$$(\hat{R}x, y) = (x, \hat{R}y).$$

Пример 14.2.

В евклидовом пространстве операторы вида $\hat{A}\hat{A}^+$ и $\hat{A}^+\hat{A}$ будут самосопряженными для любого линейного оператора \hat{A} .

Действительно, для оператора $\hat{A}^{+}\hat{A}$, например, имеем, что $\forall x, y \in E$.

$$(\hat{A}^{+}\hat{A}x,y)=(\hat{A}x,\hat{A}y)=(x,\hat{A}^{+}\hat{A}y)$$
, откуда и следует его самосопряженность.

Свойства самосопряженных операторов сформулируем в виде следующих утверждений.

Лемма Линейный оператор \hat{R} в E^n является самосопряженным тогда и только тогда, когда его матрица в каждом ортонормированном базисе симметрическая.

Доказательство.

Из определения 14.2 и формулы $\|\hat{R}^+\|_g = \|\Gamma\|_g^{-1} \|\hat{R}\|_g^1 \|\Gamma\|_g$ для некоторого ортонормированного базиса $\{e_1,e_2,\ldots,e_n\}$ в силу самосопряженности оператора \hat{R} имеем $\|\hat{R}\|_e = \|\hat{R}\|_e^T$. Перейдем теперь к другому ортонормированному базису $\{e_1',e_2',\ldots,e_n'\}$. Матрица перехода $\|S\|$, как было показано ранее, ортогональная, то есть для нее $\|S\|^{-1} = \|S\|^T$. Поэтому

$$\begin{split} \left\| \hat{R} \right\|_{e'}^{\mathsf{T}} &= (\left\| S \right\|^{-1} \left\| \hat{R} \right\|_{e} \left\| S \right\|)^{\mathsf{T}} = (\left\| S \right\|^{\mathsf{T}} \left\| \hat{R} \right\|_{e} \left\| S \right\|)^{\mathsf{T}} = \\ &= \left\| S \right\|^{\mathsf{T}} \left\| \hat{R} \right\|_{e}^{\mathsf{T}} (\left\| S \right\|^{\mathsf{T}})^{\mathsf{T}} = \left\| S \right\|^{\mathsf{T}} \left\| \hat{R} \right\|_{e}^{\mathsf{T}} \left\| S \right\| = \\ &= \left\| S \right\|^{\mathsf{T}} \left\| \hat{R} \right\|_{e} \left\| S \right\| = \left\| S \right\|^{-1} \left\| \hat{R} \right\|_{e} \left\| S \right\| = \left\| \hat{R} \right\|_{e'}. \end{split}$$

Верно и обратное: если
$$\|\hat{R}\|_e^T = \|\hat{R}\|_e$$
, то $\forall x, y \in E^n$
$$(\hat{R}x, y) = \|\hat{R}x\|_e^T \|y\|_e = (\|\hat{R}\|_e \|x\|_e)^T \|y\|_e =$$
$$= \|x\|_e^T \|\hat{R}^+\|_e^T \|y\|_e = \|x\|_e^T \|\hat{R}\|_e \|y\|_e = \|x\|_e^T \|\hat{R}y\|_e = (x, \hat{R}y).$$

Лемма доказана.

Признак самосопряженности может быть сформулирован как

Следствие 14.1 Если линейный оператор в E^n имеет симметриическую матрицу в некотором ортонормированном базисе, то он самосопряженый.

Лемма 14.3. Все собственные значения самосопряженного оператора \hat{R} в E^n вещественные числа.

Доказательство.

Допустим противное: пусть характеристическое уравнение самосопряженного оператора \hat{R} имеет комплексный корень $\lambda = \alpha + \beta \, i$, где $\beta \neq 0$.

По теореме 10.4 оператор \hat{R} в этом случае имеет двумерное инвариантное подпространство. То есть существует пара линейно независимых элементов x и y таких, что

$$\begin{cases} \hat{R}x = \alpha x - \beta y, \\ \hat{R}y = \alpha y + \beta x. \end{cases}$$

Умножая эти равенства скалярно: первое – справа на y, второе – слева на x, получим

$$\begin{cases} (\hat{R}x, y) = \alpha(x, y) - \beta(y, y), \\ (x, \hat{R}y) = \alpha(x, y) + \beta(x, x). \end{cases}$$

Вычитая почленно второе равенство из первого и принимая во внимание самосопряженность \hat{R} , приходим к заключению, что $\beta\left(\left|x\right|^2+\left|y\right|^2\right)=0$. Однако это противоречит предположению о том, что $\beta\neq0$.

Лемма доказана.

Лемма Собственные векторы самосопряженного оператора, отвечающие различным собственным значениям, попарно ортогональны.

Доказательство.

Пусть для самосопряженного оператора \hat{R} имеют место равенства $\hat{R}f_1=\lambda_1f_1$ и $\hat{R}f_2=\lambda_2f_2$, где ненулевые элементы f_1 и f_2 — собственные векторы оператора \hat{A} и $\lambda_1\neq\lambda_2$ — соответствующие им собственные значения. Умножив эти равенства соответственно: первое — скалярно справа на f_2 , второе — скалярно слева на f_1 , получим

$$\begin{cases} (\hat{R}f_1, f_2) = (\lambda_1 f_1, f_2), \\ (f_1, \hat{R}f_2) = (f_1, \lambda_2 f_2) \end{cases} \text{ или } \begin{cases} (\hat{R}f_1, f_2) = \lambda_1 (f_1, f_2), \\ (f_1, \hat{R}f_2) = \lambda_2 (f_1, f_2). \end{cases}$$

Вычитая эти равенства почленно и учитывая, что \hat{R} – самосопряженный оператор, приходим к равенству

$$(\lambda_1 - \lambda_2)(f_1, f_2) = 0\,,$$
 откуда $(f_1, f_2) = 0\,.$

Лемма доказана.

Лемма 14.5. Пусть E' — инвариантное подпространство самосопряженного оператора \hat{R} , действующего в E, и пусть E'' — ортогональное дополнение к E' в E. Тогда E'' — также инвариантное подпространство оператора \hat{R} .

Доказательство.

E' инвариантно для оператора \hat{R} , то есть

$$\forall x \in E' : \hat{R}x \in E'$$
.

Если E'' – ортогональное дополнение E', то $\forall x' \in E'$ и $\forall x'' \in E''$: (x', x'') = 0.

Поскольку E' – инвариантное подпространство \hat{R} , то будет также иметь место $(\hat{R}x',x'')=0$. Но в силу самосопряженности \hat{R} и $(x',\hat{R}x'')=0$. Последнее равенство означает, что $\hat{R}x''\in E''$ $\forall x''\in E''$,

то есть и подпространство E'' будет инвариантным для оператора \hat{R} .

Лемма доказана.

Теорема Для любого самосопряженного оператора \hat{R} в E^n существует ортонормированный базис, состоящий из собственных векторов \hat{R} .

Доказательство.

Для самосопряженного оператора \hat{R} в E^n существует, по крайней мере, одно собственное значение λ_1 . По лемме 14.3 это собственное значение вещественно. Из системы уравнений (10.1) можно найти отвечающий λ_1 собственный вектор e_1 . Без ограничения общности можно считать, что $\left|e_1\right|=1$. Если n=1, то доказательство завершено.

Рассмотрим E^1 – линейную оболочку элемента e_1 , являющуюся одномерным инвариантным собственным подпространством \hat{R} . Пусть E^{n-1} – ортогональное дополнение к E^1 . Тогда по лемме 14.5 E^{n-1} – также инвариантное подпространство оператора \hat{R} .

Рассмотрим теперь оператор \hat{R} как действующий только в E^{n-1} . Тогда очевидно, что \hat{R} — самосопряженный оператор, заданный в E^{n-1} , поскольку E^{n-1} инвариантно относительно \hat{R} по лемме 14.5 и, кроме того,

$$\forall x, y \in E^n : (\hat{R}x, y) = (x, \hat{R}y),$$

в том числе и $\forall x, y \in E^{n-1}$.

Применяя изложенные выше рассуждения, найдем новое собственное значение λ_2 и соответствующий ему собственный вектор e_2 . Без ограничения общности можно считать, что $\left|e_2\right|=1$. При этом λ_2 может случайно совпасть с λ_1 , однако из построения ясно, что $(e_1,e_2)=0$.

Если n=2, то построение базиса завершено. Иначе рассмотрим E^2 – линейную оболочку $\{e_1,e_2\}$ и ее ортогональное дополнение E^{n-2} , найдем новое собственное значение λ_3 и соответствующий ему собственный вектор e_3 и т.д.

Аналогичные рассуждения проводим до исчерпания E^n .

Теорема доказана.

Следствие ${\bf B}$ базисе, построенном в теореме 14.6, самосопряженный оператор \hat{R} имеет диагональную матрицу в E^n .

Доказательство.

Вытекает из замечания о важности собственных векторов.

Следствие Размерность собственного инвариантного подпространства, отвечающего некоторому собственному значению самосопряженного оператора, равна кратности этого собственного значения.

Доказательство.

Следует из доказательства теоремы 14.6.

Следствие 14.4.

Если линейный оператор \hat{R} в E^n имеет n попарно ортогональных собственных векторов, то он самосопряженный.

Доказательство.

Пронормируем собственные векторы оператора \hat{R} и примем их за ортонормированный базис, в котором матрица этого линейного оператора $\left\|\hat{R}\right\|_e$ диагональная и, следовательно, симметрическая. Тогда в силу леммы 14.2 линейный оператор \hat{R} самосопряженный.

Следствие доказано.

Следствие 14.5.

Если $\|R\|$ симметрическая матрица, то существует ортогональная матрица $\|Q\|$ такая, что матрица

$$||D|| = ||Q||^{-1} ||R|| ||Q|| = ||Q||^{T} ||R|| ||Q||$$

диагональная.

Доказательство.

В ортонормированном базисе симметрическая матрица $\|R\|$ определяет самосопряженный оператор в E^n , поэтому в качестве искомой матрицы $\|Q\|$ можно выбрать матрицу перехода от данного ортонормированного базиса к ортонормированному базису, образованному собственными векторами этого оператора по схеме, использованной в доказательстве теоремы 14.6.

Следствие доказано.

Теорема Два самосопряженных оператора \hat{A} и \hat{B} имеют общую систему собственных векторов в E^n тогда и только тогда, когда $\hat{A}\hat{B}=\hat{B}\hat{A}$.

Доказательство.

Докажем необходимость.

Пусть $\hat{A}a = \lambda a$ и $\hat{B}a = \mu a$, тогда

$$\hat{B}\hat{A}a = \lambda\hat{B}a = \lambda\mu a$$
; $\hat{A}\hat{B}a = \mu\hat{A}a = \lambda\mu a$,

и, вычитая почленно, получим, что $(\hat{A}\hat{B}-\hat{B}\hat{A})\,a=o$. Поскольку a — произвольный собственный вектор, то данное соотношение верно и для всей совокупности собственных векторов, а значит, и для любого элемента в E^n , так как из собственных векторов можно образовать базис. Поэтому $\hat{A}\hat{B}-\hat{B}\hat{A}=\hat{O}$.

Докажем достаточность.

Пусть самосопряженные операторы \hat{A} и \hat{B} коммутируют и пусть, кроме того, $\hat{A}a=\lambda a$. Рассмотрим здесь лишь случай, когда все собственные значения оператора \hat{A} различны.

Покажем, что элемент евклидова пространства $b=\hat{B}a$ является собственным вектором оператора \hat{A} . Действительно, в силу $\hat{A}\hat{B}=\hat{B}\hat{A}$ имеем

$$\hat{A}b = \hat{A}\hat{B}a = \hat{B}\hat{A}a = \hat{B}\lambda a = \lambda \hat{B}a = \lambda b.$$

Поскольку все собственные значения \hat{A} кратности единица, то λ есть его собственное значение, отвечающее a и b одновременно. Поэтому $b=\kappa a$ и, поскольку $b=\hat{B}a$, также $\hat{B}a=\kappa a$. Значит, a – собственный вектор оператора \hat{B} .

Теорема доказана.